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PRINTING THE FUTURE

Tehnicke karakteristike: Oblasti:

a) povecanje brzine izrade modela a) Medicina - 3D bioprinting
b) povedanje taénosti modela b) Proizvodnja hrane

c) novi materijali za RP i RT modele c) Gradevina

d) povecanje dimenzija modela d) 3D za kuénu primenu

e) telegenerisanje proizvoda na zahtev




Razvoj AM sektora

» Three of the fastest-growing areas for AM include the medical,
dental, automotive and aerospace sectors!

In 10 years, the use of AM for the production of final
products has gone from almost nothing to 28.3% of the total
oroduct and services revenue from AM worldwide.
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“3D PRINTING’S POTENTIAL TO REVOLUTIONIZE
MANUFACTURING IS QUICKLY BECOMING A REALITY.”

Global 3D printing market
Estimates and forecast of market value to 2018, in USD
2013 2014 2018
Category estimates forecast forecast
Total $2.5b $3.8b $16.2b
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A word of caution
Tech Consultancy Puts 3D Printing at Peak of "Hype Cycle"
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Printing Aims to Deliver Organs on Demand

Pressure Nutrient Mixing  Actuator Flow Valve

ﬁa;él&%




Primena 3D Printinga u medicini

brikovanje tkiva i organa;

proteza, implantata, medicinskih pomagala, me
kih modela i sl.

Ciji — razvoj novih
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3D Bioprinting

Kompjuterski voden bioaditivni proizvodni proces u kome
rSi deponovanje zivih Celija na skeletne strukture (scaff
bazi hidro-gela u cilju fabrikacije 3D tkiva i organa.

s bioadditive manufacturing technologies, i
, inkjet-based printing , an




3D Bioprinting

inting tehnologije obuhvataju:
laser-based writing of cells,
kjet-based systems, and
usion-based deposition
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3D Bioprinting
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Bioprinting Tissues and Organs

» Organ printing takes advantage of 3D printing technology to
produce cells, biomaterials, and cell l|aden biomaterials
individually or in tandem, layer by layer, directly creating 3D
tissuelike structures.

» Various materials are available to build the scaffolds, depending
on the desired strength, porosity, and type of tissue, with
hydrogels usually considered to be most suitable for producing
soft tissues.

» Although 3D bioprinting systems can be laser based, inkjet based,
or extrusion based, Inkjet based bioprinting is most common.



edura 3D Bio -printinga obuhvata sledece faze (korake) :

reiranje strukture-seme (blueprint) organa zajedno sa
ularnim sistemom

erisanje plana procesa 3D bioprintinga;
ija maticnih celija;
jacija maticnih Celija u celije organa;
ink rezervoara sa specificnim ¢




The precise placement of multiple cell types is required to fabricat
thick and complex organs, and for the simultaneous construction o
the integrated vascular or microvascular system that is critical fo
these organs to function.

Tissue spheroids for blood vessel printing: (a) Deposition of straight filaments
containing a string of tissue spheroids (stained in white) with agarose filaments
as support material (stained in blue) both around cellular flaments and inside
the core, (b) design for multicellular assembly with (c) printed samples with
human umbilical vein smooth muscle cells and human skin fibroblast cells



Concept of 3D organ printing technology
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3D Bioprinting
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Evolution of Tissue
Engineering
and Bioprinting

1984  Charles Hull in

1996
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3D Bioprinting




Customized Implants and Prostheses

Implants and prostheses can be made in nearly
aginable geometry through the translation of xray, MRI
scans into digital .stl 3D print files.

his way, 3D printing has been used successfully
care sector to make both standard and
d prosthetic limbs and surgical implants

ip implants.




Customized Implants and Prostheses

gunmmmm -
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Scientists have created a revolutionary new electronic membrane that could replace
pacemakers, fitting over a heart to keep it beating regularly over an indefinite period of
time. The device uses a “spider-web-like network of sensors and electrodes” to
continuously monitor the heart’s electrical activity and could, in the future, deliver
electrical shocks to maintain a healthy heart-rate. Researchers used computer modelling
technology and a 3D-printer to create a prototype membrane and fit it to a rabbit’s heart,
keeping the organ operating perfectly “outside of the body in a nutrient and oxygen-rich
solution”.



Anatomical Models for surgical preparation

The individual variances and complexities of the human bo
ake the use of 3Dprinted models ideal for sur
eparation.

rinted models can be useful beyond surgical planni

inted neuroanatomical models can be p
neurosurgeons by providing a repre
ost complicated structuresin t

ities can also




Drug Delivery Devices and Personalized Dosage Forms

» 3D printing technologies are already being used in
pharmaceutical research and fabrication, and they promise to
be transformative .

» Advantages of 3D printing include precise control of droplet
size and dose, high reproducibility, and the ability to produce
dosage forms with complex drug release profiles.

» Complex drug manufacturing processes could also be
standardized through use of 3D printing to make them simpler
and more viable.

» 3D printing technology could be very important in the
development of personalized medicine, too.



» The primary 3D printing technologies used for pharmaceutical
production are inkjet based or inkjet powder based 3D printing.

» In inkjet based drug fabrication, inkjet printers are used to spray
formulations of medications and binders in small droplets at
precise speeds, motions, and sizes onto a substrate. The most
commonly used substrates include different types of cellulose,
coated or uncoated paper, microporous bioceramics, glass
scaffolds, metal alloys, and potato starch films, among others.

» In powder based 3D printing, the inkjet printer head sprays the
“ink” onto the powder foundation. When the ink contacts the
powder, it hardens and creates a solid dosage form, layer by
layer. The ink can include active ingredients as well as binders
and other inactive ingredients. After the 3D printed dosage
form is dry, the solid object is removed from the surrounding
loose powder substrate.



» Personalized 3D printed drugs may particularly benefit patients
who are known to have a pharmacogenetic polymorphism or
who use medications with narrow therapeutic indices.

» Pharmacists could analyze a patient’s pharmacogenetic profile,
as well as other characteristics such as age, race, or gender, to
determine an optimal medication dose.

» A pharmacist could then print and dispense the personalized
medication via an automated 3D printing system.

» If necessary, the dose could be adjusted further based on
clinical response.












Challenges in AM materials properties
predictions

rocesses introduce anisotropy in mechanical properties (z different fro
nces |n laser/EB power (e.g., perimeter vs center) introduce heter

might result in embedded defects that are difficult to identi

are open- loop: temperature sensors have been |
s are not used to optimize the processin




biopel biopolymers (1990)
PEEK, PES, PPS (1983)
LLDPE (1980)
polysulphone, PPO (1965)
polyimides (1962)

acetal, POM, PC (1958)
PP (1957)

HDPE (1953)

PS (1950)

Iyera (1949)

formica (1945)

PTFE (teflon) (1943)

PU, PET (1941)

PMMA, PVC (1933)
neoprene (1931)

synthetic rubber (1922)
bakelite (1909)

alumina ceramic (1890}
celllose acetate (1872)
ebonite (1851}

reinforced concrete (1849)
vulcanized rubber (1844)
cellulose nitrate (1835)

rubber (1550)

gutta percha (800)

tortoiseshell (400)
paper (105)

horn (50 BC)
amber (80 BC)
lacquer (1000 BC)
papyrus (3000 BC)
glass (5000 BC)
cement (5000 BC)
pottery (6000 BC)

wood (prehistory)
stone, flint {prehistory}
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Micro-Architected Materials

Technical ceramics
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Size-dependent properties

At the nanometer scale, properties become size-dependent.

For example,

(1) Chemical properties - reactivity, catalysis

(2) Thermal properties - melting temperature

(3) Mechanical properties - adhesion, capillary forces
(4) Optical properties - absorption and scattering of light
(5) Electrical properties - tunneling current

(6) Magnetic properties - superparamagnetic effect

- New properties enable new applications

sides = 3 sides = 2 sides = 1
surface = 32 x 6 = 54 surface =22 x 6 = 24 surface=12x 6 =6
volume = 33 = 27 volume =23=3 volume = 13 =1
surface/volume =. surface/volume =. surface/volume =.

Surface to volume ration incrase with reducing particle size



Materials structures

Disordered
at boundary

Most materials are made up of ordered crystals
that meet at disordered boundaries; the crystals in
nanomaterials are only 100—10,000 atoms across.

Amorphous or “glassy "materials are totally
disordered; the only characteristic dimension is
that of the atoms or molecules that make them up.
They are an extreme from of nanomaterial.
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Mechanical Properties

At the nanoscale, surface and interface
forces become dominant.

For example,

These forces can exceed
forces that are normally
dominant at macroscopic
length scales

(1) Adhesion forces
(2) Capillary forces
(3) Strain forces




How does structure control behavior?

Une of the most important properties governing the mechanical behavior of a solid is the density g;. Similarly, one of the critical
parameters that governs a lattice material’s properties is the relative density ([ = p/p; ). This is 2 peometric parameter that
effectively defines the amount of empty space in a lattice. It i a combmation of density and deformation mode that govern the bulk

material hbehavior.,

1"4 strui FJ! I J! I:'F
e e O e, Maxwell's Rule:
N e’ \ et b—E{+3=s—m{m2-D}
joini el b — 3} + E =5F—mM {m S'D:'
Fd Fi F F 4
Mechanism Frame Bendmg Dommated  Stretching Dominated

Cellular materials can be divided into two main categories by the deformation mode: hunding dominated and m'l.'r-l:l'l.ing abominated
structures. The Exctor that determines which mosde ooeurs is whether or not there are mechani=mes in the structure, where the noumber of
mechanisms is determined by Maxwell’s rule. For this rule, b is the number of struts, | & the number of irictionless joints, 5 is the

number of selfestress states, and M is the number of mechanisms.



Stochastic Materials (Foams)

Two types of foamis: l:]'l!'n:n-l’_'c-Ll Foams Closed-Cell Foams

*  Open-cell (comtinuous, inter-connected struts)

*  Closed-oell {disorete, discontinumsas Fln-n:kﬂs:.

Deformation in foams acours va I'ran-d.lngdl:ht comnEttent material.
Eaﬂmmunndmt}nmmmtﬂ:mplnnd':mtnmlﬂuiu:mm
make use of nanscale phenomena in deriving its bulk properties,

ELASTOMERIC FOAM
COMPRESSION

CEMSIFICATION

STRESS, o

Y = PLATEAL [ELASTIC BUCKLING)

LINEAR ELASTICITY (BENDIMG)
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Periodic Materials (Lattices)

Oetet Lattice Structure

Characteristics nl'gindic lattices: Hnnc}mh Structure

*  Single repeating unst cell

*  Sfructure repeats along a set of hasis vectors

Pertmdic lattioe structures have been used for a number of
years as lightwedght structural materials. Deformation
nercurs by a combination of hending and stretching of the

truss members. b is possible to obtain significantly
improved strength and stiffness becasse of the improved

miaterial architecture.

Mickel Microlatti

X 10 s

NS, g, al. Effective of Cicta
Tiruss Latrice Materials, [ Mock, . Solidy 3000, 43,
1T47-1768

Llniaxial CCHTIIEESinII of Mickel Microlattice

Schardlen, T. A v al. Ukralighe Setala Micrnbesioes. Samo BH 1, 154, %62-5%65

The samiples shown above are hollow micredattices, developed and tested in a collshoration between groups at HRL, UC Irvine, and Caltech. These
pertadic lattice structures are shle to make use of nanoscale phenomena in deriving their properties, The individual members are bollow tubes that are
1 — dmom in length, 100 — 500pm in diameter, and 100 — 500nm thick. They have properties that incude:

*  Diensities as low a5 0.9 mgfec.
*  Full recovery even in excess of 50% sirain.
*  Mowel huckling mechaniam at the nodes.

*  Vertical awis huckling via small, discrete strain bursts.

The Eabrication process and more detailed constituent material behavior is shown in the figures helow
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Bendjng Dominated Structures

® A strucnere is bending dominated when the number of mechansms is non-zero (m = 0)
®  Bending is the weakest mnde of deformation bor any structure,

® Al foams, both apen and closed-cell, are bending dominated .

E = p'E,
oy = 0.3p%a,,

Cadecahadron
Unit Gl Square Lattice Hexagonal Lathos

Flack, M.AL ri. al. 5l ds: puast, | ared Fotura. Frac, U Soc. A4 M1
A, 249525 16

Stretching Dominated Structures

* A gructure is siretching dominated when the mumber of mechanisms is zero (m = 0}, m

- .‘i:rﬂu:hlngu :ht!tm‘g«ﬂlrruﬂnddnﬁrmxm[nrmrmunurt_ E = 3‘53

®  These structires can still have perisdic or macroscopic strain-producing mechanams. ﬂ-}l = M. Eﬁdjl'j
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Material Property (Ashby) Charts

There is still a great potential for improving the performandce of materials by designing lightweight stretching domanated siructures, Shown helow are
meaterial property plots of srength and stffness, along with the tarpet repion that we are hopung to reach theough the design of enhanced nano-

architected materials.
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Nanotrusses

'I'.h.l.'n-l.lg.h.l:ht aclvenit of new l'ttlmnlngl.nl a-:l!.'m:ﬂmhm[dmtfn ILHH'I-_E_r:"H:.].', it i m[h:-.:dhlnt-ru.:‘ud]}' r-|:|'u'-n-|:|:|.|.||.'e structures with festures on suh-
micron lenpth scales. Ulsing the commercial two-photon hithography machane created by the German hased comgpany Nanoscribe, we have been ahle to
produce the lattice structures with sub-maoron constitsents.

Fabrication Process:

Pl‘ﬂ-!'.ﬂ':l'l:i.l:ﬁ of tabricated structures:

Twao-phiston litkography is used to oreate a polymer sample.

The palymer is coated uang ALD, CVD, or an electroless deposition
meethod to oreate a than film on the sample.
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Two-Photon Lithography Polymer Skeleton
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(a) Photopolymerization (b) Solid polymer template

Atomic layer
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4D PRINTING

Skylar Tibbits is shaping
the next development,
which he calls 4D printing,
where the fourth dimension
is time. This emerging
technology will allow us to
print objects that then
reshape themselves or
self-assemble over time.

Year of Impact (4D printing)

Sectors

Expected Year of Impact

2015

2016

2017

2018 | 2019 | 2020 | 2021

2022

2023

2024

Healthcare

Military

Infrastructure

Automobile

Packaging

Aerospace

Manufacturing

Source: Frost & Sullivan, June 2014

The expected year of widespread/ large-scale adoption of 4D
Printing technology has been computed through assessments of
technology advances, industry initiatives, challenges, advances in

related industries, and market potential

Important Aspects of 4D Printing

\ Simulation

| Software

Simulation software for

self-assembly and
design constraints
optimization.

O Autodesk

o CATIA

0 OpenSource

&

3D printer with

capability to print

multiple SMART

materials

O Stratasys
ROVA
SolidView
GeoMagic

materials
printer

') Multi

materials

Materials that change

shape upon external

stimuli

O Shape memory alloy

O Self healing
materials

Further Applications of Smart Materials













